Cutting feedback in Bayesian regression adjustment for the propensity score.

نویسندگان

  • Lawrence C McCandless
  • Ian J Douglas
  • Stephen J Evans
  • Liam Smeeth
چکیده

McCandless, Gustafson and Austin (2009) describe a Bayesian approach to regression adjustment for the propensity score to reduce confounding. A unique property of the method is that the treatment and outcome models are combined via Bayes theorem. However, this estimation procedure can be problematic if the outcome model is misspecified. We observe feedback that can bias propensity score estimates. Building on new innovation in Bayesian computation, we propose a technique for cutting feedback in a Bayesian propensity analysis. We use the posterior distribution of the propensity scores as an input in the regression model for the outcome. The method is approximately Bayesian in the sense that it does not use the full likelihood for estimation. Nonetheless, it severs feedback between the treatment and outcome giving propensity score estimates that are free from bias but modeled with uncertainty. We illustrate the method in a matched cohort study investigating the effect of statins on primary stroke prevention.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model feedback in Bayesian propensity score estimation.

Methods based on the propensity score comprise one set of valuable tools for comparative effectiveness research and for estimating causal effects more generally. These methods typically consist of two distinct stages: (1) a propensity score stage where a model is fit to predict the propensity to receive treatment (the propensity score), and (2) an outcome stage where responses are compared in t...

متن کامل

Covariate balance in a Bayesian propensity score analysis of beta blocker therapy in heart failure patients

Regression adjustment for the propensity score is a statistical method that reduces confounding from measured variables in observational data. A Bayesian propensity score analysis extends this idea by using simultaneous estimation of the propensity scores and the treatment effect. In this article, we conduct an empirical investigation of the performance of Bayesian propensity scores in the cont...

متن کامل

An Application of Non-response Bias Reduction Using Propensity Score Methods

‎In many statistical studies some units do not respond to a number or all of the questions‎. ‎This situation causes a problem called non-response‎. ‎Bias and variance inflation are two important consequences of non-response in surveys‎. ‎Although increasing the sample size can prevented variance inflation‎, ‎but cannot necessary adjust for the non-response bias‎. ‎Therefore a number of methods ...

متن کامل

Bayesian Nonparametric Modeling for Causal Inference

Researchers have long struggled to identify causal effects in non-experimental settings. Many recently-proposed strategies assume ignorability of the treatment assignment mechanism and require fitting two models – one for the assignment mechanism and one for the response surface. We propose a strategy that instead focuses on very flexibly modeling just the response surface using a Bayesian nonp...

متن کامل

Adding propensity scores to pure prediction models fails to improve predictive performance

Background. Propensity score usage seems to be growing in popularity leading researchers to question the possible role of propensity scores in prediction modeling, despite the lack of a theoretical rationale. It is suspected that such requests are due to the lack of differentiation regarding the goals of predictive modeling versus causal inference modeling. Therefore, the purpose of this study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The international journal of biostatistics

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2010